學歷 |
國立交通大學/中華民國/機械工程/博士 |
專長 | 半導體製程(如台積電/美商應材/美商科林)、引擎燃燒技術、電漿醫學、環境工程之應用電漿技術、熱流數值分析、高效能平行計算 |
分機 | 33306 |
imekml@ccu.edu.tw | |
辦公室 | 系館430A |
實驗室 | 系館430B 應用電漿實驗室 | 分機23336 |
個人連結 | 個人網頁連結 |
期刊論文 |
1. Jyun-Yu Lin, Cheng-Liang Huang, Jui-Wen Chen, Kun-Mo Lin*, Chia-Chun Ou, and Yu-Hsiang Wu,
2. K.-M. Lin*, K.-C. Wang, Y.-S. Chang, and S.-Y. Chuang, “Gas heating mechanisms in atmospheric pressure helium dielectric-barrier discharges driven by a kHz power source,” Applied Sciences, Vol. 10, 7583, 2020 (MOST 109-2221-E-194-017-MY2). 3. K.-M. Lin*, C.-C. Ou, K.-C. Wang, Z.-W. Liou, and S.-Y. Chuang, “Investigation of gas heating effect and induced pressure waves of a single microdischarge in atmospheric pressure dielectric barrier discharges,” International Journal of Heat and Mass Transfer, Vol. 165, 120527, 2021 (MOST 109-2221-E-194-017-MY2) 4. K.-M. Lin*, S.-Y. Chuang, W.-Y. Guo, C.-H. Cheng, and C.-C. Ou, “Thermal Characterization for a Single Microdischarge in Atmospheric Pressure Air Dielectric Barrier Discharges,” Plasma Sources Science & Technology, Vol. 29, 075002, 2020 (MOST 107-2221-E-194-026-) 5. K.-M. Lin*, Y.-H. Huang, W.-Y. Guo, and Y.-S Chang, “Development of a Semi-Empirical 1.5D Plasma Fluid Model for a Single Microdischarge in Atmospheric-Pressure Dielectric Barrier Discharges,” Plasma Sources Science & Technology, Vol. 28, 115014, 2019 (MOST 107-2221-E-194-026-) 6. K.-M. Lin*, C.-M. Ku, and C.-H. Cheng, “Statistical behavior of a single microdischarge in atmospheric-pressure air dielectric barrier discharges,” Physics of Plasmas, Vol. 26, 013508, 2019 (MOST 106-2221-E-194-039-) (https://doi.org/10.1063/1.5054177) (SCI, IF: 1.714 (5-year, 2019), 17/34) 7. B.-R. Gu, K.-M. Lin, M.-H. Hu, C.-T. Hung, J.-S. Wu and Y.-S. Chen, “A Temporal Multi-scale Algorithm for Efficient Fluid Modeling of One-dimensional Gas Discharge,” Plasma Sources Science & Technology, Vol. 23, No. 6, 065021, 2014 8. F.-L. Li, C.-T. Hung, K.-M. Lin, T.-C. Wei, and J.-S. Wu, “Numerical and experimental investigation of light emissions of a planar nitrogen atmospheric-pressure dielectric barrier discharge due to addition of ammonia considering oxygen impurity”, Plasma Sources Science & Technology, Vol. 22, No. 6, 065003, 2013 9. K.-M. Lin, M.-H. Hu, C.-T. Hung, J.-S. Wu, F.-N. Hwang, Y.-S. Chen, and G. Cheng, “A Parallel Hybrid Numerical Algorithm for Simulating Gas Flow and Gas Discharge of an Atmospheric-Pressure Plasma Jet”, Computer Physics Communications, Vol. 183, pp. 2550–2560, 2012. 10. K.-M. Lin, C.-T. Hung, F.-N. Hwang, M. R. Smith, Y.-W. Yang, and J.-S. Wu, “Development of a Parallel Semi-Implicit Two-Dimensional Plasma Fluid Modeling Code Using Finite-Volume Method”, Computer Physics Communications, Vol. 183, pp. 1225-1236, 2012. 11. F.-L. Li, K.-M. Lin, Y.-W. Yang, C.-T. Hung, J.-S. Wu, and J.-P. Yu, “Numerical Investigation of a Parallel-Plate Atmospheric-Pressure Nitrogen/Ammonia Dielectric Barrier Discharge,” Plasma Chemistry and Plasma Processing, Vol. 31, Number 3, pp. 547-564, 2012. 12. K.-W. Cheng, C.-T. Hung, K.-M. Lin, Y.-M. Chiu, J.-S. Wu* and J.-P. Yu, "Fluid Modeling of a Nitrogen Atmospheric-Pressure Planar Dielectric Barrier Discharge Driven by a Realistic Distorted Sinusoidal AC Power Source ", Japan Journal of Applied Physics, Vol. 51, 116001, 2012 (http://dx.doi.org/10.7567/jjap.51.116001 ) (SCI, IF: 1.384 (2016), 99/148) 13. M. R. Smith, K.-M. Lin, C.-T. Hung, Y.-S. Chen, and J.-S. Wu*, “Development of an improved spatial reconstruction technique for the HLL method and its applications”, Journal of Computational Physics, Vol. 230, pp. 477-493, 2011. (http://dx.doi.org/10.1016/j.jcp.2010.09.023) 14. M. R. Smith, C.-T. Hung, K.-M. Lin, J.-S. Wu, and J.-P. Yu, “Development of a semi-implicit fluid modeling code using finite-volume method based on Cartesian grids,” Computer Physics Communications, Vol. 182, pp. 170-172, 2011 15. Cheng-Liang Huang, Tzu-Yi Liao, Yi-Ting He, Guan-Jung Lin, Wei-Hong Lai, Yi-Chi Chen, and Kun-Mo Lin*, “Characterization of OH species in kHz air/H2O atmospheric pressure dielectric barrier discharges,” Plasma Sources Science and Technology (1st revision, 20240327). 16. Kun-Mo Lin*, Jyun-Yu Lin, Muntazir Abrar, and Yu-Xuan Chen, “Analysis of ozone generation in a planar atmospheric pressure air dielectric barrier discharge reactor,” Plasma Sources Science and Technology, Vol. 32, 025007, 2023. (NSTC 111-2221-E-194-016-MY3) (10.1088/1361-6595/acb812) (SCI, IF: 4.124 (5-year, 2021), Ranking: 6/34 in PHYSICS, FLUIDS & PLASMAS) 17. Cho-Yu Lee, Jhe-Kai Lin, Wei-Cheng Wang*, Rong-Hong Chen, Kun-Mo Lin, Herman Saputro, Huynh Thanh Cong, Thong Duc Hong, and Manida Tongroon, “ The production of the hydro-processed renewable diesel (HRD) and its performances from a turbo-charged diesel engine,” Energy, Vol. 270, 126924, 2023.( https://doi.org/10.1016/j.energy.2023.12692) |
研討會論文 |
International Conference Papers: 1. (Oral) K.-M. Lin*, Y.-H. Huang, W.-Y. Guo, “Numerical Simulations of a Single Microdischarge in Atmospheric Pressure Dielectric Barrier Discharges,” 7th Asian Pacific Congress on Computational Mechanics (APCOM), Taipei, Taiwan, December 17-20, 2019. 2. (Oral) S.-Y. Zhuang, K.-M. Lin*, and Y.-S. Chang, “Thermal Characterization of an Atmospheric Pressure Helium Dielectric Barrier Discharge Reactor,” 16th International Conference on Flow Dynamics (ICFD), Sendai, Japan, November 6-8, 2019. 3. (Invited) K.-M. Lin*, Y.-H. Huang, W.-Y. Guo, and Y.-S. Chang, “Development of a Plasma Fluid Model for Atmospheric Pressure Air Dielectric Barrier Discharges,” 16th International Conference on Flow Dynamics (ICFD), Sendai, Japan, November 6-8, 2019. 4. (Invited) K.-M. Lin*, C.-H. Cheng, W.-Y. Guo, and R.-J. Zhan, “Thermal Characterization of an Atmospheric-Pressure Air DBD Reactor,” 15th International Conference on Flow Dynamics (ICFD), Sendai, Japan, November 7-9, 2018. 5. (Oral) R.-J. Zhan, K.-M. Lin*, C.-Y. Lee, and C.-F. Wong, “Characterization of Ozone Densities in the Atmospheric-Pressure Helium/Oxygen Dielectric-Barrier Discharges,” 15th International Conference on Flow Dynamics (ICFD), Sendai, Japan, November 7-9, 2018. 6. (Oral) K.-M. Lin*, W.-Y. Guo, R.-J. Zhan, and C.-H. Cheng, “Heat Transfer Analysis in an Atmospheric-Pressure Air DBD Reactor,” 12th Asian Computational Fluid Dynamics Conference (ACFD) (the 25th National Computational Fluid Dynamics Conference, NCFD), Yilan City, Taiwan, October 15-18, 2018. 7. (Oral) K.-M. Lin*, C.-M. Ku, Y.-H. Huang, C.-H. Cheng, C.-Y. Lee, “Characterization of a Single Microdischarge in Atmospheric-Pressure Air Dielectric-Barrier Discharges,” 28th Symposium on Plasma Physics and Technology, Czech Technical University in Prague, Prague, Czech, June 18-22, 2018 8. C.-T. Hung, K.-M. Lin, M.-H. Hu, Y.-M. Chiu, C.-C. Chiou, S.-Y. Wang, J.-S. Wu*, “Development of Parallel Fluid Modeling Tools for Low-Temperature Non-equilibrium Plasma Physics and Chemistry,” 6th International Conference on Plasma NanoTechnology & Science (IC-PLANTS 2013), Gero Synergy Center, Gero City, Gifu, Japan, January 2-3, 2013. 9. K.-M. Lin, M.-H. Hu, C.-T. Hung and J.-S. Wu*, “Development of Parallel Hybrid Simulation Tools for Modeling Atmospheric-Pressure Gas Discharges,” 8th EU-Japan Joint Symposium on Plasma Processing (JSPP2012), Keio/Osaka University, Nara, Japan, January 16-18, 2012. 10. (Oral) K.-M. Lin, M.-H. Hu, C.-T. Hung, and J.-S. Wu, “Development of a Parallel 2-D Hybrid Gas Flow and Plasma Fluid Modeling Algorithm and Its Application in Atmospheric-Pressure Plasma Jets”, The 7th Asia-Pacific International Symposium on the Basics and Applications of Plasma Technology, Taipei Medical University, Taiwan, April 14-16, 2012 11. K.-M. Lin, M.-H. Hu, C.-T. Hung, and J.-S. Wu, “Numerical Investigation of Atmospheric Pressure Plasma Jet Using Helium Discharge Driven by a Radio-Frequency Power Source”, American Vacuum Society (AVS) International Plasma Workshop, Taipei, Taiwan, March 22-25, 2011 12. (Oral) K.-M Lin, C.-T. Hung, M. R. Smith, and J.-S. Wu*, “One-dimensional Fluid Modeling of Helium/Oxygen Gas Discharges Driven by a Nearly Sinusoidal AC Power Source”, 7th International Conference on Flow Dynamics, Sendai, Japan, November 1-3, 2010. 13. (Oral) K.-M. Lin, M. R. Smith, and J.-S. Wu*, “Development of a large scale parallel fluid modeling code using finite-volume method based on Cartesian grids”, Conference on Computational Physics (CCP) 2009, Kaohsiung, Taiwan, December 15-19, 2009. 14. C.-T. Hung, M.-H. Hu, Y.-M. Chiu, K.-M Lin, Y.-C. Wang, and J.-S. Wu, “Non-Thermal Plasma Simulation Using Parallel Fluid Modeling Code,” HPC-Asia 2009, March 2-5 (2009), Kaohsiung, Taiwan 15. M. R. Smith, C.-T. Hung, K.-M. Lin, J.-S. Wu, and J.-P. Yu, “Development of a semi-implicit fluid modeling code using finite-volume method based on Cartesian grids,” Conference on Computational Physics (CCP) 2009, Kaohsiung, Taiwan, December 15-19, 2009
Domestic Conference Papers: 1. 王鎧承,林昆模*,“大氣氦氣電漿噴流子彈效應之研究” 109年度中國機械工程學會年會暨第37屆全國學術研討會,雲林,台灣,Nov.20-21,2020. 2. 歐家均,陳鈺軒,林昆模*,“大氣氦氣介電質電漿 OH 粒子濃度量測” 109年度中國機械工程學會年會暨第37屆全國學術研討會,雲林,台灣,Nov.20-21,2020. 3. 張耀升, 莊舜宇, 林昆模*, “氦氣大氣介電質電漿一維流體模型之電流分析,” The 43th National Conference on Theoretical and Applied Mechanics (第43屆全國力學會議), 逢甲大學, 台中, 台灣 4. 郭紋育, 鄭承翰, 林昆模*, “大氣空氣介電質電漿之氣體加熱機制分析,” The 35th National Conference on Mechanical Engineering (107年度中國機械工程學會年會暨第35屆全國學術研討會), 嘉義, 台灣, Nov. 30-Dec. 1, 2018. 5. 李忠穎, 詹仁景, 林昆模*, “氧氣混合大氣介電質氦氣電漿之臭氧生成機制分析,” The 35th National Conference on Mechanical Engineering (107年度中國機械工程學會年會暨第35屆全國學術研討會), 嘉義, 台灣, Nov. 30-Dec. 1, 2018. 6. 古竣名, 黃詣洵, 林昆模*, “大氣空氣介電質電漿的微放電行為,” The 41th National Conference on Theoretical and Applied Mechanics (第41屆全國力學會議), 國立成功大學, 台南, 台灣, Nov. 24-25, 2017 (佳作). 7. A. Aliat, K.-M. Lin, M.-H. Hu, and J.-S. Wu*, “Numerical Investigation of an Anode Supported Intermediate Temperature Solid Oxide Button Fuel Cell by Considering Feed Tubes Positioning”, 2010 CFD Taiwan, Jhongli, July, 2010 |
執行計畫 |
研究計畫: 1. 常壓空氣電漿之激發態氮氣分子特性分析, MOST 106-2218-E-194-005- 2. 常壓空氣電漿之激發態氮氣分子特性分析 – 第二部分: 後輝光放電區反應機制與傳輸現象,MOST 106-2221-E-194-039- 3. 常壓氦氣/氧氣電漿之臭氧濃度特性分析, MOST 107-2221-E-194-026- 4. 大氣介電質電漿氫氧基量測與生成機制之研究, MOST 109-2221-E-194-017-MY2 5. 利用實驗量測與數值模擬技術開發能調控亞穩態氦原子濃度之常壓氦氣電漿反應器原型, MOST 111-2221-E-194-016-MY3 |