國立中正大學九十八學年度碩士班招生考試試題

系所別:機械工程學系-乙組

科目:電子學

第2節

第1頁,共3頁

- 1. (30%) Consider the circuit shown in Fig. 1(a).
 - (a) (10%) Please find the current i flowing through the resistor 5Ω .
 - (b) (20%) Consider now that a load resistor is added to the circuit, as shown in Fig. 1(b). We want to design the load resistance R_L such that it will receive maximum power. Please give a procedure for finding R_L . Note: You do not need to find the value of R_L . Only a procedure is required.

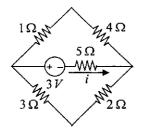
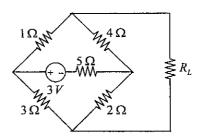
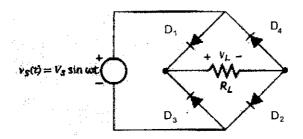
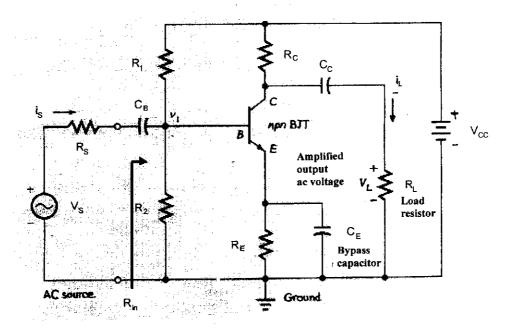


Fig. 1(a)




Fig. 1(b)

國立中正大學九十八學年度碩士班招生考試試題系所別:機械工程學系-乙組 科目:電子學


第2節

第二頁,共3頁

2. (10%) Consider the following bridge rectifier. Describe its action as a full-wave rectifier, assuming the diodes to be ideal. In the figure, the input $v_s(t) = V_s \sin \omega t$.

3. (20%) Consider the following BJT circuit.

- (a) (5%) Describe the purpose of the capacitors C_B , C_C , and C_E
- (b) (10%) Let V_{CC} = 10 V, R_1 = 18 k Ω , R_2 = 2 k Ω , R_C = 1 k Ω , R_E = 100 Ω . When V_s = 0. Estimate the collector current (i.e., the current flowing into the collector) and V_{CE} of the BJT by assuming $i_B \approx 0$ and $V_{BE} \approx 0.5$ V.
- (c) (5%) Draw the small-signal AC equivalent circuit of the BJT circuit.

國立中正大學九十八學年度碩士班招生考試試題

系所別:機械工程學系-乙組

科目:電子學

第2節

第3頁,共3頁

- 4. (24%) Figure 4 shows an active circuit comprising Operational Amplifiers.
 - (a) (8%) Prove that this circuit, with input voltage e and output voltage u, functions as a phase-lead or phase-lag compensator.
 - (b) (8%) Choose parameters: R_1 , R_2 , R_3 , R_4 , C_1 and C_2 , so that the

transfer function of this circuit becomes
$$C(s) \equiv \frac{U(s)}{E(s)} = \frac{s+100}{s+10}$$
.

(c) (8%) Sketch the frequency response of the compensator C(s) in (b) by means of Bode plot.

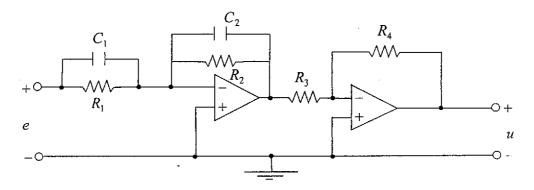


Figure 4. Lead or lag compensator

- 5. (16%) Answer the following fundamental questions about op-amp circuits:
 - (a) (8%) In active filters or analog computers, why is any operational amplifier always of *negative feedback* (i.e. the output is connected back to the Inverting input), instead of positive feedback or no feedback?
 - (b) (8%) Under what conditions are active compensators in place of passive filters to do signal processing?